Design and Operation of a Conditioning Energy Recovery Ventilator (CERV) for Passive Houses

Ben Newell and Ty Newell

January 22, 2009
Motivation and Objectives

Combine our knowledge of HVAC systems with interest in energy efficient homes to create a niche product.

Coupled with highly efficient house construction (e.g., Passive House standards), efficient house conditioning systems lead to the ability to provide all home energy needs with solar energy in a cost effective manner.

The “CERV” is a primary component for efficient heating, cooling, and dehumidification of an energy efficient home.

Development of energy efficient house conditioning systems with the goal of constructing a “net zero energy” home for central Illinois and beyond.
Air Conditioning Experience

- refrigerators
- military aircraft cooling
- automotive
Presentation Outline

• House Energy Characteristics
• Building Conditioning Requirements

• Conditioning Energy Recovery Ventilator Description
• CERV Operation and Performance
Keeping Comfortable

Lots to consider!

Building construction, outside conditions, Interior components, and activities
2007 Solar Decathlon House

- The 2007 University of Illinois Solar Decathlon “elementhouse” is a “Net Zero” house in which all house energy is supplied by solar energy (solar electric with PV panels).

- The UI 2007 Solar Decathlon House is also designed to supply up to 10,000 miles of electric vehicle transportation per year.

- Zero energy house design significantly reduces the capacity requirements of its comfort conditioning system.

- Ventilation and moisture management become very important.

- While smaller, the comfort system must be more nimble and smarter than conventional systems.
2000 sq ft Home LifeCycleCost

Simple LifeCycleCost ~ $242,000

with 12 cm insulation = $20,500
and 27 m² PV = $20,200

Or, 10 cm insulation = $17,100
and 29.5 m² PV = $22,100

Or, 5 cm insulation = $8,500
and 45 m² PV = $33,800

Optimal solution is fairly “flat”
“Sensible” heat and “latent” heat refer to the transfer of energy into or out of a conditioned space where:

- **Sensible** refers to an energy transfer that you can “sense”
 - Temperature change of air

- **Latent** refers to an energy transfer that is hidden or not sensed
 - Moisture change of air

The energy needed to drop 70°F air from 60%rh to 40%rh is the same as the energy to heat air from 70°F to 85°F.
Conventional vs. Efficient

• Conventional homes are dominated by the exterior conditions
 – Leaky envelope means unwanted ventilation
 – Larger capacity required because of free air movement
 – Free exchange of conditioned/unconditioned air without recovery of energy
 – Little moisture control

• Efficient homes balanced more towards interior loads
 – Ventilation and moisture are controlled
 – Small energy loads make energy recovery significant
Typical House Conditioning System

Illinois Weather

• Conventional home air conditioner ~3 “tons” (36,000 Btu/hr ~ 10,000 watts)
 – Designed for ~2/3 sensible and ~1/3 latent loads

• Conventional gas furnace ~80,000 Btu/hr ~ 22,000 watts

• Efficient capacity control of conventional systems difficult
 – Conventional construction requires large span of capacity control
Base Case House

So, what capacity is needed to keep a high efficiency residence comfortable? How many tons, BTUH, watts, liters per day…..?

- 2000 sq ft, single story house (~45’ x 45’)
- 50 sq ft, south facing windows, U=0.5W/m^2-K
 - High performance, triple/quadruple glazed
- UAwall + UAroof = 65W/K (~R22 wall, R44 roof)
- Ventilation = 50 cfm (0.2 ACH) => ASHRAE 62.2 standard
- 4 people (75W/person heat; 75W/person moisture)
- 200W internal generation (refrigerator, TV, computer, lights, etc)

ICF (insulated concrete form) home in Urbana IL
Comfort is a squishy concept

2000 sq ft Home Comfort

- Heating and dehumidification
- Cooling and dehumidification
- Heating and humidification

66-76F
30-60%rh

Qlatent (watts)
Qsensible (watts)
2000sq ft “Conventional” Home

- Heating and dehumidification
- Cooling and dehumidification
- Heating and humidification

- 3 x vent, 3 x UA
- 100 sqft windows

- Qsensible (watts)
- Qlatent (watts)
CERV
Conditioning Energy Recovery Ventilator

Low temperature heat pump air conditioning system:

Cold side air

Hot side air

evaporator

compressor

condenser
CERV Features

- Small capacity, self-contained, modular system
- Plug and play modules are added to reach required building capacity
- Air source heat pump with a variable speed compressor to adjust to load
- Provides heating, cooling, dehumidification, and ventilation
Refrigerant Overview

<table>
<thead>
<tr>
<th>Refrigerant</th>
<th>Systems</th>
<th>*ODP (Ozone Depletion Potential)</th>
<th>*GWP (Global Warming Potential)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R12</td>
<td>automotive</td>
<td>1</td>
<td>8100</td>
</tr>
<tr>
<td>R22</td>
<td>residential and light commercial air conditioning, refrigerators, and freezers</td>
<td>0.05</td>
<td>1700</td>
</tr>
<tr>
<td>R134a</td>
<td>residential and light commercial air conditioning, refrigerators, freezers, and automotive</td>
<td>0</td>
<td>1300</td>
</tr>
<tr>
<td>R410A</td>
<td>residential and light commercial air conditioning replacing R22</td>
<td>0</td>
<td>1890</td>
</tr>
<tr>
<td>R744 (CO2)</td>
<td>In development for automotive</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>HFO 1234 yf</td>
<td>Preliminary tests as a 134a “drop in”</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

- **ODP** – Ozone depletion potential compared to CFC-11 (1)
- **GWP** – contribution to global warming compared to same mass of CO2 (1)
Refrigerant and Regulations

- R12 banned in 1994 – replaced with R134a

- Montreal Protocol – international treaty to phase out ozone depleting substances – eliminates sale of R22 equipment starting in 2010, allocation of acceptable producers for service use of existing equipment

CERV Refrigeration System

• Use 134a phase into 1234 yf as it becomes available
 – no ozone depletion
 – very low global warming potential

• Hermetically sealed system
 – small refrigerant charge
 – eliminates onsite charging, line sets, fittings
 – sealed for lifetime of unit
 – refrigerant can be recovered
CERV Modes of Operation and Test Results

- heating
- cooling
- heating with ventilation
- cooling with ventilation
- ventilation only

integrated controls to determine most efficient conditioning mode
Heating without ventilation:

- **Outside**
 - Temperature (T) cold: -1.2°C
 - Relative Humidity (RH%) cold: 90.7%

- **Inside**
 - Temperature (T) hot: 32.2°C
 - Relative Humidity (RH%) hot: 27.5%

- **Inlet**
 - Temperature (T) cold: 5.2°C
 - Relative Humidity (RH%) cold: 84.6%

- **Outlet**
 - Temperature (T) hot: 18.1°C
 - Relative Humidity (RH%) hot: 64.5%

Energy Efficiency

- **Compressor Power**: 377 W
- **Total Heating Capacity**: 1165 W

Additional Information

- **COP**: 3.1
- **EER**: 11.1 Btu/W-hr

Energy Efficiency Ratio
Winter day just below freezing, air flow ~100cfm
Very cold day ~2°F, long operation, no defrost needed

“drop in” mode lowers comp power
Operation at 0°F, also performed at -17°F with reduced capacity data not shown.
Coefficient of Performance (heat mode)

Time (seconds)

COP heating
Cooling without ventilation:

- **outside**
 - $T_{\text{hot in}} = 37.7^\circ C$
 - $RH\%_{\text{in}} = 29.0\%$
 - $T_{\text{hot out}} = 55.4^\circ C$
 - $RH\%_{\text{out}} = 12.7\%$

- **inside**
 - $T_{\text{cold out}} = 22.6^\circ C$
 - $RH\%_{\text{out}} = 64.0\%$
 - $T_{\text{cold in}} = 31.5^\circ C$
 - $RH\%_{\text{in}} = 39.0\%$

- Compressor power = 450 W
- COP = 2.4
- EER = 8.6 Btu/W-hr
- Total cooling capacity = 1079 W
- Lat. = 133 W
- Sens. = 947 W
Heating with ventilation:

- **T hot in = 14.1 C**
 - RH% in = 71.5%
- **T hot out = 32.0 C**
 - RH% out = 28.6%
- **T cold out = 14.1 C**
 - RH% out = 71.5%
- **T cold in = 20.2 C**
 - RH% in = 58.6%

- **compressor power = 335 W**
- **total heating capacity = 1803 W**
- **COP = 5.4**
- **EER = 19.3 Btu/W-hr**
Cooling with ventilation:

- **outside**
 - **T cold in** = 36.7°C
 - **RH% in** = 26.7%
 - **T hot out** = 36.7°C
 - **RH% out** = 26.7%

- **CERV**

- **inside**
 - **T cold out** = 25.1°C
 - **RH% out** = 48.0%
 - **T hot in** = 21.6°C
 - **RH% in** = 61.5%

- **compressor power** = 381 W
- **total cooling capacity** = 1342 W
- **COP** = 3.5
- **EER** = 12.7 Btu/W-hr
- **lat.** = 231 W
- **sens.** = 1110 W
Ventilation only:

CERV in dehumidification mode
- tests show water removal rate of 0.5 liters/hr
- with compressor power of 300 W gives 1.5 l/kW-hr
- EnergyStar dehumidifier standard for this size is >1.0 l/kW-hr
- could be coupled with a ventless clothes drier
Future Testing

Many initial tests have been performed, but ...many remain.

Test matrices quickly expand!

4 temperatures x 4 air flows x 4 humidities x 4 compressor speeds
= 256 points

results look promising so far
Additional Future Options:

CERV with heat pump water heater
- heats water with a COP of 2-3 (electric water heater COP is 1)
- added benefit of cooling and dehumidifying house
- with COP of 3 and 15% efficient PV panels = 45% efficiency equivalent to solar thermal without added complexity
Other Considerations

• Evaporator Defrosting
 – Frost buildup on air source heat pump when heating in cold weather

• Condensate removal
 – can possibly be used to improve condenser efficiency

• moisture/mold/odor prevention

• end of life recycle ability
Thanks

Questions?