Combined Heat and Power for Wastewater Applications

Illinois State Energy Office Wastewater Efficiency Workshop

Graeme Miller Assistant Director US DOE Midwest CHP Technical Assistance Partnership Carbondale, Illinois October 26, 2018

Agenda

- DOE CHP Technical Assistance Partnerships
- CHP Concepts Benefits and Technologies
- CHP and Wastewater Facilities
- Available Utility Incentives
- Next Steps in Evaluating CHP

DOE CHP Technical Assistance Partnerships (CHP TAPs)

End User Engagement

Partner with strategic End Users to advance technical solutions using CHP as a cost effective and resilient way to ensure American competitiveness, utilize local fuels and enhance energy security. CHP TAPs offer fact-based, nonbiased engineering support to manufacturing, commercial, institutional and federal facilities and campuses.

Stakeholder Engagement

Engage with strategic Stakeholders, including regulators, utilities, and policy makers, to identify and reduce the barriers to using CHP to advance regional efficiency, promote energy independence and enhance the nation's resilient grid. CHP TAPs provide fact-based, non-biased education to advance sound CHP programs and policies.

Technical Services

As leading experts in CHP (as well as microgrids, heat to power, and district energy) the CHP TAPs work with sites to screen for CHP opportunities as well as provide advanced services to maximize the economic impact and reduce the risk of CHP from initial CHP screening to installation.

www.energy.gov/chp

DOE CHP Technical Assistance Partnerships (CHP TAPs)

CA, NV, AZ, HI Western www.westernCHPTAP.org

Gene Kogan Center for Sustainable Energy 858-633-8561 gene.kogan@energycenter.org

TX, NM, OK, AR, LA Southcentral www.southcentralCHPTAP.org

Gavin Dillingham, Ph.D. HARC 281-216-7147 gdillingham@harcresearch.org

Central www.centralCHPTAP.org

Cliff Haefke University of Illinois at Chicago 312-355-3476 chaefk1@uic.edu

Ted Bronson

DOE CHP TAP Coordinator [contractor] Office of Energy Efficiency and Renewable Energy U.S. Department of Energy tbronson@peaonline.com

DOE CHP Deployment Program Contacts www.energy.gov/CHPTAP

Tarla T. Toomer, Ph.D.

CHP Deployment Manager Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Tarla.Toomer@ee.doe.gov

Patti Garland

DOE CHP TAP Coordinator [contractor] Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Patricia.Garland@ee.doe.gov

Energy Utilization in the Utility Sector

Source: https://flowcharts.llnl.gov/content/assets/images/charts/Energy/Energy_2015_United-States.png

CHP: A Key Part of Our Energy Future

- Form of Distributed Generation (DG)
- An integrated system
- Located at or near a building / facility
- Provides at least a portion of the electrical load and
- Uses thermal energy for:
 - o Space Heating / Cooling
 - o Process Heating / Cooling
 - o Dehumidification

Source: www.energy.gov/chp

CHP Recaptures Heat of Generation, Increasing Energy Efficiency, and Reducing GHGs

30 to 55% less greenhouse gas emissions

Common CHP Technologies

CHP System Schematic

Critical Infrastructure and Resiliency Benefits of CHP

"Critical infrastructure" refers to those assets, systems, and networks that, if incapacitated, would have a substantial negative impact on national security, national economic security, or national public health and safety."

Patriot Act of 2001 Section 1016 (e)

Applications:

- Hospitals and healthcare centers
- Water / wastewater treatment plants
- Police, fire, and public safety
- Centers of refuge (often schools or universities)
- Military/National Security
- Food distribution facilities
- Telecom and data centers

CHP (if properly configured):

- Offers the opportunity to improve Critical Infrastructure (CI) resiliency
- Can continue to operate, providing uninterrupted supply of electricity and heating/cooling to the host facility

What Are the Benefits of CHP?

- CHP is **more efficient** than separate generation of electricity and heating/cooling
- Higher efficiency translates to lower operating costs (but requires capital investment)
- Higher efficiency **reduces emissions** of pollutants
- CHP can also increase **energy reliability** and enhance power quality
- On-site electric generation can **reduce grid congestion** and avoid distribution costs.

CHP Is Used Nationwide In Several Types of **Buildings/Facilities**

Slide prepared on 7-3-18

CHP Today in the United States

Existing CHP Capacity

 81.3 GW of installed CHP at more than 4,400 industrial and commercial facilities

 8% of U.S. Electric Generating Capacity; 14% of Manufacturing

- Avoids more than 1.8 quadrillion
 Btus of fuel consumption annually
- Avoids 241 million metric tons of CO₂ compared to separate production

Source: DOE CHP Installation Database (U.S. installations as of December 31, 2017)

CHP in Wastewater Facilities

CHP Today in WWTPs

(By CHP System Size)

Number of CHP Systems

Installed CHP Generating Capacity, MW 42.0 182.0 166.8

187.8

Source: U.S. DOE CHP Installation Database (U.S. installations as of December 31, 2017)

163.5

MW

MW

MW

MW

499.9 MW

CHP Today in WWTPs

(By Prime Mover Type)

Number of CHP Systems

Installed CHP Generating Capacity, MW

Source: U.S. DOE CHP Installation Database (U.S. installations as of December 31, 2017)

CHP Today in WWTPs (By Fuel Type)

Number of CHP Systems

Installed CHP Generating Capacity, MW

MIDWEST

MIDWEST

Co-digestion

- Co-digesting different organic wastes can increase biogas production, but care must be taken to understand the characteristics of the combined feedstock.
 - Can affect the quality of the effluents
 - Can impact permitting requirements
 - Is the feedstock you expected the feedstock you actually received
 - Not understanding the characteristics and/or volume added can severely damage the digester

Designing for Reliability

Two Generator Types

- Induction
 - Requires external power source to operate
 - When grid goes down, generator goes down
 - Less Complicated and Costly to Interconnect
- Synchronous
 - Self Excited (Does not need grid to operate)
 - Generator can operate thru Grid outages
 - More Complicated and Costly to Interconnect

Uninterrupted Operation Requirements

- Black start capability
 - Allows the system to start up independently from the grid
- Generators capable of gridindependent operation
 - The system must be able to operate without grid power signal
- Ample Carrying Capacity
 - System size must match critical loads
- Parallel utility interconnection and switch gear controls
 - The system must be able to disconnect from the grid, support critical loads, and reconnect after an event

Lessons Learned: Biogas CHP Projects

Drivers and Benefits

- Energy cost savings
- Federal, state and local utility incentives
- Energy/sustainability plans and emissions reductions
- Green publicity/positive public relations
- Enhanced reliability
- Facility Upgrades
- Increased biogas production
- Enhanced biosolid management
- Utility load shedding

Fun Facts:

A typical WWTP processes 100 gal/day of wastewater for each person they serve

Each million gallons per day (MGD) of wastewater flow can produce enough biogas in an anaerobic digester to produce 30 kW of electric capacity

Lessons Learned: Biogas CHP Projects

Technical Challenges

- Biogas cleanup & cost considerations
- Space constraints
- Staff education/training with CHP operation and maintenance
- Biogas production fluctuations

Other Challenges

- Utility issues
- Permitting issues
- Biogas supply/Food waste introduction
- Project Financing

Biogas Conditioning Is it really required?

Hydrogen Sulfide (H₂S) and Siloxane concentrations are found in the biogas produced from all WWTP anaerobic digesters.

H₂S oxidizes into sulfur dioxide in the combustion process, forming sulfuric acid when dissolved into water droplets. This can damage a prime mover exhaust system, heat exchangers, and stack liners.

Siloxane Removal is also Necessary

- Siloxanes are a family of organic silicon compounds that originate as additives to personal care products such as soaps, shampoos, sunscreens, lotions, hair sprays, deodorants, and shaving products.
- Siloxanes pass through the WWTP processes, accumulate in sludge and volatize to form a contaminant in anaerobic digester biogas.
- When combusted, the siloxanes form a glass-like deposit that is harmful to reciprocating engines, gas turbines, microturbines, and fuel cells.

Siloxane Deposits Result in:

- A decrease in CHP project efficiency
- An increase in heat rate
- A reduction in power output
- Formation of "hot spots"
- Premature equipment failure

Microturbine Recuperator

A Piston Head

Biogas Contaminant Removal System Component Schematic Diagram

Biogas Conditioning Equipment Requirements

Table #5 - Electrical Generation Potential for Selected Biogas Flow Rates						
Biogas Flow Rate, scfm	Thermal Energy Flow, MMBtuh ^a	Approximate Wastewater Throughput to Produce the Biogas Flow, Million Gallons per Day (MGD)	Potential Installed Generating Capacity, kW ^b	Gas Treatment Equipment Costs, \$/kW		
35	1.26	4	85 – 130	\$2,580 – \$4000		
100	3.6	12	250 – 380	\$1,010 - \$1,640		
300	10.8	36	750 – 1,135	\$530 — \$825		
500	18.0	60	1,245 – 1,895	\$350 – \$540		
1,000	36.0	120	2,490 - 3,790	\$255 – \$440		
2,500	90.0	300	6,230 – 9,475	\$185 — \$365		

WWTP Biogas Conditioning Conclusions

- Prime mover manufacturers have established "Allowable Siloxane Limits" for equipment protection
- Gas conditioning costs show a considerable "economy of scale"
- Biogas conditioning is essential to ensure that the biogas is of acceptable quality for use in biogas-fueled electrical generating equipment
- Biogas conditioning systems are custom engineered (with the removal efficiency based upon an inlet gas analysis and concentration limits for biogas utilization set by the equipment manufacturers)
- Without proper gas conditioning, maintenance costs will increase dramatically; system efficiency will deteriorate; and increased downtime will result in reduced annual energy generation.

Project Snapshot:

Partnership with Municipality

Mill Street Wastewater Treatment Plant Rock Island, IL

Application/Industry: Wastewater Treatment Capacity: 1 MW Prime Mover: Reciprocating engine Fuel Type: Biomass Thermal Use: Heating Installation Year: 2014

Highlights: The reciprocating engines at Mill Street Wastewater Treatment Plant provide power and heat for the plant as well as 4-8% of the power for city facilities.

Source: http://www.rigov.org/DocumentCenter/View/7546

Project Snapshot:

Targeting Net-Zero

Downers Grove Sanitary District Downers Grove, IL

Application/Industry: Wastewater Treatment Capacity: 280 kW Prime Mover: Reciprocating engine Fuel Type: Biomass Thermal Use: Heat for the digestion process Installation Year: 2014

Highlights: Waste grease from nearby restaurants helps power the CHP system, which offsets about 50% of the wastewater treatment plant's energy consumption.

Source: http://www.midwestchptap.org/profiles/ProjectProfiles/DownersGrove.pdf

Project Snapshot:

Participating in Energy Efficiency Programs

Glenbard Wastewater Authority

Glen Ellyn, Illinois

Application/Industry: Wastewater Treatment Capacity: 750 kW (2 x 375 kW) Prime Mover: Reciprocating engines Fuel Type: Biogas & natural gas Thermal Use: Heating digesters Installation Year: 2016

Highlights: The Glenbard Wastewater Authority received energy efficiency incentives through the Illinois Department of Commerce and Economic Opportunity's (DCEO) Public Sector CHP Pilot Program, which is part of the Illinois Energy Now Public Sector Program. To boost biogas production, the Glenbard Wastewater Authority also receives food waste and fats, oils, and greases (FOG).

Source: <u>http://www.gbww.org/wp-content/uploads/2016/03/Glenbard-CHP-Project_Final.pdf</u>

Available Incentives

Illinois CHP Incentives

ComEd CHP Program Changes

- Eligibility expanded to \geq 500 kW peak customers (from \geq 1 MW), customers ≥ 10 MW exempt under FEJA
- Production Incentive
 - Still \$0.07/eligible kWh after 1 year and M&V, but pre-payment of \$60/kW available after 1 month of operation
 - Sliding scale incentivizing higher efficiency projects
 - No longer a cap (previously \$2 million)
- Feasibility Study Incentive (no longer capped at 50%)
 - Up to \$10k for CHP projects <400 kW (new)
 - Up to \$25k for CHP projects ≥400 kW
- Implementation Contractor/Outreach Provider

MIDWEST

 ERC selected to manage a network of Technical Service Providers and to provide outreach and marketing of the ComEd CHP Program

Source:

https://www.comed.com/WaysToSave/Fo rYourBusiness/FactSheets/CHP FactSheet CHP Technical Assistance Partnerships .pdf

Illinois CHP Incentives

Other utilities

- Nicor (https://nicorgasrebates.com)
 - Incentive \$1/therm for <u>eligible</u> natural gas savings, under Customer Program, Capped at \$500,000
 - Feasibility Studies up to \$12.5k, in addition to ComEd incentive
- Peoples Gas (https://accel.peoplesgasdelivery.com)
 - Incentive \$1/therm for <u>eligible</u> natural gas savings, under Custom Program
- Ameren (https://www.ameren.com/illinois/energy-efficiency)
 - Incentive \$0.12/kWh and \$1.20/therm for <u>eligible</u> electricity and natural gas savings, under Custom Program
 - Electric cap at \$500,000, natural gas cap at \$100,000
 - Feasibility Studies up to 50% of costs or 25% of annual savings identified, capped at \$20k

How to Implement a CHP Project with the Help of the CHP TAP

DOE TAP CHP Screening Analysis

- High level assessment to determine if site shows potential for a CHP project
 - Qualitative Analysis
 - Energy Consumption & Costs
 - Estimated Energy Savings & Payback
 - CHP System Sizing

- Quantitative Analysis

 Understanding project drivers

36

 Understanding site peculiarities

Annual Energy Consumption		
	Base Case	CHP Case
Purchased Electricty, kWh	88,250,160	5,534,150
Generated Electricity, kWh	0	82,716,010
On-site Thermal, MMBtu	426,000	18,872
CHP Thermal, MMBtu	0	407,128
Boiler Fuel, MMBtu	532,500	23,590
CHP Fuel, MMBtu	0	969,845
Total Fuel, MMBtu	532,500	993,435
Annual Operating Costs		
Durch and Electricity, É	¢7.000.012	¢1 104 400
Chandhu Dewen C	\$7,060,013	\$1,104,460
Standby Power, S	\$U	ŞU 64.44.520
On-site Thermal Fuel, \$	\$3,195,000	\$141,539
	Ş0	\$5,819,071
	<u>\$0</u>	<u>\$744,444</u>
Total Operating Costs, Ş	\$10,255,013	\$7,809,514
Simple Pavback		
Annual Operating Savings, \$		\$2,445,499
Total Installed Costs, \$/kW		\$1,400
Total Installed Costs, \$/k		\$12,990,000
Simple Payback, Years		5.3
Operating Costs to Generate		
Fuel Costs, \$/kWh		\$0.070
Thermal Credit, \$/kWh		(\$0.037)
Incremental O&M, \$/kWh		<u>\$0.009</u>
Total Operating Costs to Generate, \$/kWh		\$0.042

Screening Questions

- Do you pay more than \$.06/kWh on average for electricity (including generation, transmission and distribution)?
- Are you concerned about the impact of current or future energy costs on your operations?
- Are you concerned about power reliability?
 What if the power goes out for 5 minutes... for 1 hour?
- Does your facility operate for more than 3,000 hours per year?
- Do you have thermal loads throughout the year? (including steam, hot water, chilled water, hot air, etc.)

Screening Questions (cont.)

- Does your facility have an existing central plant?
- Do you expect to replace, upgrade, or retrofit central plant equipment within the next 3-5 years?
- Do you anticipate a facility expansion or new construction project within the next 3-5 years?
- Have you already implemented energy efficiency measures and still have high energy costs?
 - still have high energy costs?
- Are you interested in reducing your facility's impact on the environment?
- Do you have access to on-site or nearby biomass resources? (i.e., landfill gas, farm manure, food processing waste, etc.)

A Feasibility Analysis Typically Involves:

- Electrical load profiling
- Thermal load profiling
- Unit sizing
- Thermal use determination (what to do with the heat)
- Installation cost estimations
- Financial calculations (simple payback, ROI, etc.)
- Cost/savings information compared to what your facility would pay if the CHP system were not installed

Finding the Best Candidates: Some or All of These Characteristics

- Consistent source of organic matter to produce biogas
- High and constant thermal load
- Favorable spark spread
- Need for high reliability
- Concern over future electricity prices
- Interest in reducing environmental impact
- Existing central plant
- Planned facility expansion or new construction; or equipment replacement within the next 3-5 years

CHP Project Resources

DOE CHP Technologies Fact Sheet Series

Good Primer Report

www.eere.energy.gov/chp

www.energy.gov/chp-technologies

CHP Project Resources

<section-header><section-header><complex-block><complex-block><complex-block><complex-block><complex-block><complex-block><complex-block><complex-block><complex-block><complex-block><complex-block><complex-block><complex-block><complex-block>

EPA dCHPP (CHP Policies and Incentives Database

energy.gov/chp-projects

www.epa.gov/chpdchpp-chppolicies-and-incentives-database

CHP Project Resources

DOE CHP Installation Database (List of all known CHP systems in U.S.)

Low-Cost CHP Screening and Other Technical Assistance from the CHP TAP

energy.gov/CHPTAP

energy.gov/chp-installs

What are the US DOE Industrial Assessment Centers?

- Established by the U.S. Department of Energy in 1976
- Teams of university-based faculty and student engineers (trained 3,300+ students)
- Provide no-cost energy, productivity, and waste assessments
- Serve small and medium sized US manufacturers nationwide

The IAC program has already conducted over 18,227 assessments with more than 138,162 associated recommendations. Average recommended yearly savings is \$136,656.

Eligibility Requirements

- Within Standard Industrial Codes (SIC) 20-39
- Located less than 150 miles of a participating university
- Gross annual sales below \$100 million
- Fewer than **500 employees** at the plant site
- Annual energy bills more than \$100,000 and less than \$2.5 million
- No professional in-house staff to perform the assessment

Summary

- CHP is a great tool for wastewater facilities to consume their biogas on-site and provide energy resiliency
- There are available utility energy efficiency incentives for CHP in Illinois
- Proven technologies are commercially available and cover a full range of sizes and applications

Next Steps

• Contact Midwest CHP TAP for assistance if:

- Interested in having a Qualification Screening performed to determine if there is an opportunity for CHP at your site
- If you already have an existing CHP plant and interested in expanding it
- \odot Need an unbiased 3rd Party Review of a proposal

Thank You

Graeme Miller Assistant Director (312) 996-3711 gmille7@uic.edu Cliff Haefke Director (312) 355-3476 chaefk1@uic.edu

