The Visible Cost of Air
A Worksheet to Assist in Identifying Compressed Air Saving Opportunities
By: Dan Marsch

Overview
Can you see air? Not usually, but you can see the visible impact air has on your company’s “bottom-line.” Compressed air costs your company real money, usually a substantial amount of money. Compressed air is often taken for granted as a necessary cost, and is often abused and wasted. Its cost flows into the nebulous pot called, “overhead.” Because of this, it tends to get squandered and misused.

There is a wealth of handbooks and “how-to” publications available on the market. However the reader may need a PhD in engineering to decipher the mountains of calculations and constants. This Fact Sheet is different in its approach and methodology. It will provide general, practical rule-of-thumb applications and recommendations. It will provide the user a simple worksheet to assist in identifying areas of opportunity that may exist at one’s own facility. Once realizing this, the user may then seek additional assistance from a professional air management service provider who will assess the system and recommend equipment and determine costs.

Air Survey

List each compressor’s horsepower: ____ ____ ____ ____ ____ ____
(EXAMPLE 2-50HP AND 1-25HP)

Cost of Compressed Air Calculation- 2 items needed
a. Average cost per kWh
b. Calculation of total annual compressor operating hours

a. $0.______ b. ______ Total Annual Hours
(Example $0.06/kWh) (24hrs x 7days = 8,760 hours/year)

Calculation:
Qty. HP x 0.746 /0.9 x Cost per kWh x Total Annual Hours = $Annual Cost

Example from above: 125HP x 0.746 /0.9 x $0.06 x 8,760 = $54,458 per year

Work Area

_________ x 0.746/0.9 x __________ x __________ = $_________

One Hazelwood Drive, Champaign, IL 61820 217-333-8940
ISTC is a Division of the Prairie Research Institute at the University of Illinois
www.istc.illinois.edu
Note: If operating less than one 30HP compressor return on investment, improvements may be hard to justify. Longer return on investments is typical on small systems.

Compressed Air Survey Questionnaire

Check any conditions listed below that apply

1. **Does the plant have multiple compressors with no sequencing or controls to automatically start and/or stop compressors based on the demand in the plant?**
 - Yes No

 Compressors that are sequenced, automatically turn on/off based on demand...a huge savings potential versus manual operation.

2. **Does the plant have open air blowing of compressed air for parts clean up or cooling or vacuum generation?**
 - Yes No

 Besides a safety concern, open-end tubes waste large amounts of air. Recommendation: replace with high-efficient safety nozzles that reduce air consumption up to 40-50% and substantially reduce noise levels. Or utilize high-volume, low-pressure air blowers instead of compressed air.

3. **Does the plant have a known Leakage/Waste problem?**
 - Yes No

 During a quiet time, turn up compressor to maximum setting and listen for leaks or use ultrasonic leak detection equipment that will identify leaks in noisy environments. Then fix those leaks!

4. **Is the compressor operating at a higher pressure at the discharge of the compressor and lower pressure at the point of use?**
 - Yes No

 Work Area
 Compressor Pressure Setting:_______ vs. PSI Needed:_______

 (EXAMPLE: Compressor air pressure setting: 120 PSIG vs. actual needed 90 PSIG in plant)
Rule of Thumb:
Extra “just-in-case” compressed air costs an additional 5% energy for every additional 10 PSIG increment. This costs money!

5. Is the plant experiencing a water problem due to liquid water in the air system... creating rust, scale and maintenance problems?

Yes No

Water rusts air tools, contaminates painting systems and rusts piping. Keep water in the water lines, not the air lines.

6. Are air dryers currently in use?

Yes No Refrigerated or Regenerative (circle one)

Not to be confused with after-coolers, which typically is part of the compressor system. Dryers remove the remaining water after-coolers pass. Regenerative systems require additional energy to “regenerate” the desiccant, but produces dryer, higher quality air.

7. Is compressor heat reclamation currently in use?

Yes No

Waste heat is not always a waste, but can be reclaimed for other uses. This heat can be recovered and reused to heat water, air, etc.

8. **Compressor Operations and Maintenance:** (All strongly Recommended)

Is there a maintenance program in place?

Yes No

Is the Air filter clean and regularly changed?

Yes No

Is the After cooler / Air Dryer Condenser clean?

Yes No

9. **Loaded vs. Unloaded Hours- Compressor Utilization**

Loading Utilization %

Calculation

\[
\text{Loading Utilization} = \left(\frac{\text{Total Loaded Hrs}}{\text{Total Operating Hrs}} \right) \times 100
\]

Example: 6,000hrs/10,000hrs x 100 = 60%

Work Area

_____ Loaded Hrs / Operating Hrs x 100 = _____%
Higher percentages equates to higher utilization. Compressors consume energy even when not making (loading) air.

10. Is the pipe size adequate for the compressor’s output?

Yes No

If the compressor output is unknown, estimate compressor output as follows:

$$\text{____ x 5 = ____CFM (not exact but close for this comparison)}$$

Work Area

$$\text{____ HP x 5 = _____ Compressor CFM vs. _____CFM Capacity of Pipe}$$

Compressor CFM should be less than capacity of pipe; otherwise situation creates a restriction, an example, “like blowing through a straw.”

Table of Pipe Capacities

<table>
<thead>
<tr>
<th>Diameter</th>
<th>CFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1” Black Iron Pipe</td>
<td>109</td>
</tr>
<tr>
<td>1.5” Black Iron Pipe</td>
<td>245</td>
</tr>
<tr>
<td>2” Black Iron Pipe</td>
<td>436</td>
</tr>
<tr>
<td>2.5” Black Iron Pipe</td>
<td>680</td>
</tr>
<tr>
<td>3” Black Iron Pipe</td>
<td>980</td>
</tr>
<tr>
<td>4” Black Iron Pipe</td>
<td>1744</td>
</tr>
</tbody>
</table>

11. Is there adequate air storage?

Yes No

General Estimation

$$\text{_____HP x 5= ______Compressor CFM}$$

Then, _____ Compressor CFM x 5 = _______ gallons of recommended storage

The Dept. of Energy recommends the above storage for load/no load energy savings. Don’t consider the “air in the pipes” as storage. It will provide only a split-second of air supply. Storage pays for itself in maximizing the efficiency of the entire air system.

12. Does the plant utilize a flow or pressure controller, stabilizing pressure at +/- 1 PSID through out the plant?
Equipment is available (called Intermediate Controllers) that enable a facility to run varying pressures to multiple locations, thereby eliminating one plant-wide pressure. This offers additional energy savings potential by generating only what’s needed.

CONTACT INFORMATION
Assistance with identifying compressed air savings opportunities from ISTC personnel in offices located across Illinois. Please visit www.istc.illinois.edu for local contact information.